Title
Adom: Accelerated Decentralized Optimization Method For Time-Varying Networks
Abstract
We propose ADOM - an accelerated method for smooth and strongly convex decentralized optimization over time-varying networks. ADOM uses a dual oracle, i.e., we assume access to the gradient of the Fenchel conjugate of the individual loss functions. Up to a constant factor, which depends on the network structure only, its communication complexity is the same as that of accelerated Nesterov gradient method (Nesterov, 2003). To the best of our knowledge, only the algorithm of Rogozin et al. (2019) has a convergence rate with similar properties. However, their algorithm converges under the very restrictive assumption that the number of network changes can not be greater than a tiny percentage of the number of iterations. This assumption is hard to satisfy in practice, as the network topology changes usually can not be controlled. In contrast, ADOM merely requires the network to stay connected throughout time.
Year
Venue
DocType
2021
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139
Conference
Volume
ISSN
Citations 
139
2640-3498
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Kovalev, Dmitry114.40
Egor Shulgin212.03
Peter Richtárik3131484.53
Alexander Rogozin400.34
Gasnikov Alexander52711.58