Title
Non-Asymptotic Performance Guarantees For Neural Estimation Of F-Divergences
Abstract
Statistical distances (SDs), which quantify the dissimilarity between probability distributions, are central to machine learning and statistics. A modern method for estimating such distances from data relies on parametrizing a variational form by a neural network (NN) and optimizing it. These estimators are abundantly used in practice, but corresponding performance guarantees are partial and call for further exploration. In particular, there seems to be a fundamental tradeoff between the two sources of error involved: approximation and estimation. While the former needs the NN class to be rich and expressive, the latter relies on controlling complexity. This paper explores this tradeoff by means of non-asymptotic error bounds, focusing on three popular choices of SDs-Kullback-Leibler divergence, chi-squared divergence, and squared Hellinger distance. Our analysis relies on non-asymptotic function approximation theorems and tools from empirical process theory. Numerical results validating the theory are also provided.
Year
Venue
DocType
2021
24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS)
Conference
Volume
ISSN
Citations 
130
2640-3498
0
PageRank 
References 
Authors
0.34
0
3
Name
Order
Citations
PageRank
Sreejith Sreekumar140.72
Zhengxin Zhang200.68
Ziv Goldfeld301.01