Title
Self-Supervised Pillar Motion Learning for Autonomous Driving
Abstract
Autonomous driving can benefit from motion behavior comprehension when interacting with diverse traffic participants in highly dynamic environments. Recently, there has been a growing interest in estimating class-agnostic motion directly from point clouds. Current motion estimation methods usually require vast amount of annotated training data from self-driving scenes. However, manually labeling point clouds is notoriously difficult, error-prone and time-consuming. In this paper, we seek to answer the research question of whether the abundant unlabeled data collections can be utilized for accurate and efficient motion learning. To this end, we propose a learning framework that leverages free supervisory signals from point clouds and paired camera images to estimate motion purely via self-supervision. Our model involves a point cloud based structural consistency augmented with probabilistic motion masking as well as a cross-sensor motion regularization to realize the desired self-supervision. Experiments reveal that our approach performs competitively to supervised methods, and achieves the state-of-the-art result when combining our self-supervised model with supervised fine-tuning.
Year
DOI
Venue
2021
10.1109/CVPR46437.2021.00320
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021
DocType
ISSN
Citations 
Conference
1063-6919
0
PageRank 
References 
Authors
0.34
0
3
Name
Order
Citations
PageRank
Chenxu Luo1293.12
Xiaodong Yang2109441.92
Alan L. Yuille3103391902.01