Title
Design space for scaling-in general purpose computing within the DDR DRAM hierarchy for map-reduce workloads
Abstract
ABSTRACTThis paper conducts a design space exploration of placing general purpose RISCV cores within the DDR DRAM hierarchy to boost the performance of important data analytics applications in the datacenter. We investigate the hardware (where? how many? how to interface?) and software (how to place data? how to map computations?) choices for placing these cores within the rank, chip, and bank of the DIMM slots to take advantage of the locality vs. parallelism trade-offs. We use the popular MapReduce paradigm, normally used to scale out workloads across servers, to scale in these workloads into the DDR DRAM hierarchy. We evaluate the design space using diverse off-the-shelf Apache Spark Workloads to show the pros-and-cons of different hardware placement and software mapping strategies. Results show that bank-level RISCV cores can provide tremendous speedup (up to 363X) for the offload-able parts of these applications, amounting to 14X speedup overall in some applications. Even in the non-amenable applications, we get at least 31% performance boost for the entire application. To realize this, we incur an area overhead of 4% at the bank level, and increase in temperature of < 4°C over the chip averaged over all applications.
Year
DOI
Venue
2021
10.1145/3457388.3458661
CF
DocType
Citations 
PageRank 
Conference
1
0.35
References 
Authors
0
7