Title
Hanet: Hybrid Attention-Aware Network For Crowd Counting
Abstract
An essential yet challenging issue in crowd counting is the diverse background variations under complicated real-life environments, which makes attention based methods favorable in recent years. However, most existing methods only rely on first-order attention schemes (e.g. 2D position-wise attention), while ignoring the higher-order information within the congested scenes completely. In this paper, we propose a hybrid attention-aware network (HANet) with a high-order attention module (HAM) and an adaptive compensation loss (ACLoss) to tackle this problem. On the one hand, the HAM applies 3D attention to capture the subtle discriminative features around each people in the crowd. On the other hand, with the distributed supervision, the ACLoss exploits the prior knowledge from higher-level stages to guide the density map prediction at a lower level. The proposed HANet is then established with HAM and ACLoss working as different roles and promoting each other. Extensive experimental results show the superiority of our HANet against the state-of-the-arts on three challenging benchmarks.
Year
DOI
Venue
2020
10.1109/ICPR48806.2021.9412883
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR)
DocType
ISSN
Citations 
Conference
1051-4651
0
PageRank 
References 
Authors
0.34
0
6
Name
Order
Citations
PageRank
Xinxing Su100.34
Yuchen Yuan2664.98
Xiangbo Su300.34
Zhikang Zou483.92
Shilei Wen57913.59
Pan Zhou638262.71