Title
Balanced Networks Under Spike-Time Dependent Plasticity
Abstract
The dynamics of local cortical networks are irregular, but correlated. Dynamic excitatory-inhibitory balance is a plausible mechanism that generates such irregular activity, but it remains unclear how balance is achieved and maintained in plastic neural networks. In particular, it is not fully understood how plasticity induced changes in the network affect balance, and in turn, how correlated, balanced activity impacts learning. How do the dynamics of balanced networks change under different plasticity rules? How does correlated spiking activity in recurrent networks change the evolution of weights, their eventual magnitude, and structure across the network? To address these questions, we develop a theory of spike-timing dependent plasticity in balanced networks. We show that balance can be attained and maintained under plasticity-induced weight changes. We find that correlations in the input mildly affect the evolution of synaptic weights. Under certain plasticity rules, we find an emergence of correlations between firing rates and synaptic weights. Under these rules, synaptic weights converge to a stable manifold in weight space with their final configuration dependent on the initial state of the network. Lastly, we show that our framework can also describe the dynamics of plastic balanced networks when subsets of neurons receive targeted optogenetic input.Author Summary Animals are able to learn complex tasks through changes in individual synapses between cells. Such changes lead to the coevolution of neural activity patterns and the structure of neural connectivity, but the consequences of these interactions are not fully understood. We consider plasticity in model neural networks which achieve an average balance between the excitatory and inhibitory synaptic inputs to different cells, and display cortical-like, irregular activity. We extend the theory of balanced networks to account for synaptic plasticity and show which rules can maintain balance, and which will drive the network into a different state. This theory of plasticity can provide insights into the relationship between stimuli, network dynamics, and synaptic circuitry.
Year
DOI
Venue
2021
10.1371/journal.pcbi.1008958
PLOS COMPUTATIONAL BIOLOGY
DocType
Volume
Issue
Journal
17
5
ISSN
Citations 
PageRank 
1553-734X
0
0.34
References 
Authors
0
3
Name
Order
Citations
PageRank
Alan Eric Akil100.34
Robert Rosenbaum222.06
Kresimir Josić3365.49