Title
BCNet: Searching for Network Width with Bilaterally Coupled Network
Abstract
Searching for a more compact network width recently serves as an effective way of channel pruning for the deployment of convolutional neural networks (CNNs) under hardware constraints. To fulfill the searching, a one-shot supernet is usually leveraged to efficiently evaluate the performance w.r.t. different network widths. However, current methods mainly follow a unilaterally augmented (UA) principle for the evaluation of each width, which induces the training unfairness of channels in supernet. In this paper, we introduce a new supernet called Bilaterally Coupled Network (BCNet) to address this issue. In BCNet, each channel is fairly trained and responsible for the same amount of network widths, thus each network width can be evaluated more accurately. Besides, we leverage a stochastic complementary strategy for training the BCNet, and propose a prior initial population sampling method to boost the performance of the evolutionary search. Extensive experiments on benchmark CIFAR-10 and ImageNet datasets indicate that our method can achieve state-of-the-art or competing performance over other baseline methods. Moreover, our method turns out to further boost the performance of NAS models by refining their network widths. For example, with the same FLOPs budget, our obtained EfficientNet-B0 achieves 77.36% Top-1 accuracy on ImageNet dataset, surpassing the performance of original setting by 0.48%.
Year
DOI
Venue
2021
10.1109/CVPR46437.2021.00221
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021
DocType
ISSN
Citations 
Conference
1063-6919
0
PageRank 
References 
Authors
0.34
0
6
Name
Order
Citations
PageRank
Xiu Su101.69
Shan You215.41
Fei Wang3246.14
Chen Qian47925.58
Changshui Zhang55506323.40
Chang Xu610620.21