Title
Sublinear Time Hypergraph Sparsification via Cut and Edge Sampling Queries
Abstract
The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Bencz\'ur and Karger (1996) showed that given any $n$-vertex undirected weighted graph $G$ and a parameter $\varepsilon \in (0,1)$, there is a near-linear time algorithm that outputs a weighted subgraph $G'$ of $G$ of size $\tilde{O}(n/\varepsilon^2)$ such that the weight of every cut in $G$ is preserved to within a $(1 \pm \varepsilon)$-factor in $G'$. The graph $G'$ is referred to as a {\em $(1 \pm \varepsilon)$-approximate cut sparsifier} of $G$. Subsequent recent work has obtained a similar result for the more general problem of hypergraph cut sparsifiers. However, all known sparsification algorithms require $\Omega(n + m)$ time where $n$ denotes the number of vertices and $m$ denotes the number of hyperedges in the hypergraph. Since $m$ can be exponentially large in $n$, a natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in $n$, {\em independent of the number of edges}. We resolve this question in the affirmative, giving the first sublinear time algorithm for this problem, given appropriate query access to the hypergraph.
Year
DOI
Venue
2021
10.4230/LIPIcs.ICALP.2021.53
ICALP
DocType
Citations 
PageRank 
Conference
0
0.34
References 
Authors
0
3
Name
Order
Citations
PageRank
Yu Chen106.76
Sanjeev Khanna2605.46
Ansh Nagda300.68