Title
Physical Layer Security Enhancement With Reconfigurable Intelligent Surface-Aided Networks
Abstract
Reconfigurable intelligent surface (RIS)-aided wireless communications have drawn significant attention recently. We study the physical layer security of the downlink RIS-aided transmission framework for randomly located users in the presence of a multi-antenna eavesdropper. To show the advantages of RIS-aided networks, we consider two practical scenarios: Communication with and without RIS. In both cases, we apply the stochastic geometry theory to derive exact probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-interference-plus-noise ratio. Furthermore, the obtained PDF and CDF are exploited to evaluate important security performance of wireless communication including the secrecy outage probability, the probability of nonzero secrecy capacity, and the average secrecy rate. Monte-Carlo simulations are subsequently conducted to validate the accuracy of our analytical results. Compared with traditional MIMO systems, the RIS-aided system offers better performance in terms of physical layer security. In particular, the security performance is improved significantly by increasing the number of reflecting elements equipped in a RIS. However, adopting RIS equipped with a small number of reflecting elements cannot improve the system performance when the path loss of NLoS is small.
Year
DOI
Venue
2021
10.1109/TIFS.2021.3083409
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
Keywords
DocType
Volume
Wireless communication, Security, Signal to noise ratio, Interference, Physical layer security, Mathematical model, MISO communication, Fisher-Snedecor F-distribution, MIMO, reconfigurable intelligent surface, stochastic geometry
Journal
16
ISSN
CitationsĀ 
PageRankĀ 
1556-6013
1
0.35
ReferencesĀ 
Authors
37
5
Name
Order
Citations
PageRank
Jiayi Zhang191174.44
Hongyang Du210.35
Qiang Sun3327.01
Bo Ai41581185.94
Derrick Wing Kwan Ng53588189.08