Title
Identifying Leaf Phenology Of Deciduous Broadleaf Forests From Phenocam Images Using A Convolutional Neural Network Regression Method
Abstract
Vegetation phenology plays a key role in influencing ecosystem processes and biosphere-atmosphere feedbacks. Digital cameras such as PhenoCam that monitor vegetation canopies in near real-time provide continuous images that record phenological and environmental changes. There is a need to develop methods for automated and effective detection of vegetation dynamics from PhenoCam images. Here we developed a method to predict leaf phenology of deciduous broadleaf forests from individual PhenoCam images using deep learning approaches. We tested four convolutional neural network regression (CNNR) networks on their ability to predict vegetation growing dates based on PhenoCam images at 56 sites in North America. In the one-site experiment, the predicted phenology dated to after the leaf-out events agree well with the observed data, with a coefficient of determination (R2) of nearly 0.999, a root mean square error (RMSE) of up to 3.7 days, and a mean absolute error (MAE) of up to 2.1 days. The method developed achieved lower accuracies in the all-site experiment than in the one-site experiment, and the achieved R2 was 0.843, RMSE was 25.2 days, and MAE was 9.3 days in the all-site experiment. The model accuracy increased when the deep networks used the region of interest images rather than the entire images as inputs. Compared to the existing methods that rely on time series of PhenoCam images for studying leaf phenology, we found that the deep learning method is a feasible solution to identify leaf phenology of deciduous broadleaf forests from individual PhenoCam images.
Year
DOI
Venue
2021
10.3390/rs13122331
REMOTE SENSING
Keywords
DocType
Volume
leaf phenology, convolutional neural network regression, PhenoCam, image segmentation, green chromatic coordinate
Journal
13
Issue
Citations 
PageRank 
12
0
0.34
References 
Authors
0
5
Name
Order
Citations
PageRank
Mengying Cao100.68
Ying Sun200.34
Xin Jiang300.34
Ziming Li414721.94
Qinchuan Xin56811.07