Title
Overhead For Simulating A Non-Local Channel With Local Channels By Quasiprobability Sampling
Abstract
As the hardware technology for quantum computing advances, its possible applications are actively searched and developed. However, such applications still suffer from the noise on quantum devices, in particular when using two-qubit gates whose fidelity is relatively low. One way to overcome this difficulty is to substitute such non-local operations by local ones. Such substitution can be performed by decomposing a non-local channel into a linear combination of local channels and simulating the original channel with a quasiprobability-based method. In this work, we first define a quantity that we call channel robustness of non-locality, which quantifies the cost for the decomposition. While this quantity is challenging to calculate for a general non-local channel, we give an upper bound for a general two-qubit unitary channel by providing an explicit decomposition. The decomposition is obtained by generalizing our previous work whose application has been restricted to a certain form of two-qubit unitary. This work develops a framework for a resource reduction suitable for first-generation quantum devices.
Year
DOI
Venue
2021
10.22331/q-2021-01-28-388
QUANTUM
DocType
Volume
ISSN
Journal
5
2521-327X
Citations 
PageRank 
References 
0
0.34
0
Authors
2
Name
Order
Citations
PageRank
Kosuke Mitarai110.75
Keisuke Fujii265.56