Title
Forward Link Outage Performance Of Aeronautical Broadband Satellite Communications
Abstract
High-throughput satellites (HTSs) play an important role in future millimeter-wave (mmWave) aeronautical communication to meet high speed and broad bandwidth requirements. This paper investigates the outage performance of an aeronautical broadband satellite communication system's forward link, where the feeder link from the gateway to the HTS uses free-space optical (FSO) transmission and the user link from the HTS to aircraft operates at the mmWave band. In the user link, spot beam technology is exploited at the HTS and a massive antenna array is deployed at the aircraft. We first present a location-based beamforming (BF) scheme to maximize the expected output signal-to-noise ratio (SNR) of the forward link with the amplify-and-forward (AF) protocol, which turns out to be a phased array. Then, by supposing that the FSO feeder link follows Gamma-Gamma fading whereas the mmWave user link experiences shadowed Rician fading, we take the influence of the phase error into account, and derive the closed-form expression of the outage probability (OP) for the considered system. To gain further insight, a simple asymptotic OP expression at a high SNR is provided to show the diversity order and coding gain. Finally, numerical simulations are conducted to confirm the validity of the theoretical analysis and reveal the effects of phase errors on the system outage performance.
Year
DOI
Venue
2021
10.1631/FITEE.2000445
FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING
Keywords
DocType
Volume
Aeronautical broadband satellite network, Free-space optical (FSO) transmission, High throughput mmWave communication, Outage probability, Phase error, TN92
Journal
22
Issue
ISSN
Citations 
6
2095-9184
0
PageRank 
References 
Authors
0.34
0
6
Name
Order
Citations
PageRank
Huaicong Kong1104.52
Min Lin25310.69
Shiwen He340734.11
Xiaoyu Liu400.68
Jian Ouyang512.05
Wei-Ping Zhu615126.21