Title
Feature Selection Evaluation towards a Lightweight Deep Learning DDoS Detector
Abstract
Today’s networks and services undoubtedly require a high level of protection from cyber threats and attacks. State-of-the-art solutions that implement Machine Learning (ML) have shown to improve the accuracy and confidence in threat detection compared to previous approaches, making it suitable for detecting today’s sophisticated attacks such as Distributed Denial of Service (DDoS). However, in real-world deployments, input data streams take large bandwidth and processing capacity, especially for Deep Learning (DL) solutions that require extensive input data. On the other hand, deployment environments usually have limited bandwidth and computing resources, such as in the Internet of Things (IoT). Thus, a lightweight detection solution that satisfies such constraints is needed. In this paper, we utilize a feature reduction approach for our DL-based DDoS detector based on the Analysis of Variance (ANOVA), which is used to identify important data features and reduce the data inputs needed for detection. Our result shows that we can reduce the data input needed by up to 84.21% while only reducing 0.1% detection accuracy. We also provide a detailed analysis of the characteristics of DDoS attacks using ANOVA and compared our work with recent DL-based DDoS detection systems to demonstrate that our results are comparable to existing approaches.
Year
DOI
Venue
2021
10.1109/ICC42927.2021.9500458
ICC 2021 - IEEE International Conference on Communications
Keywords
DocType
ISSN
ANOVA,DDoS Detection,Deep Learning,Feature Selection
Conference
1550-3607
ISBN
Citations 
PageRank 
978-1-7281-7123-4
0
0.34
References 
Authors
0
5
Name
Order
Citations
PageRank
Odnan Ref Sanchez100.34
Matteo Repetto221.71
Alessandro Carrega300.34
R. Bolla4668.51
Jane Frances Pajo500.34