Title
NerfingMVS - Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo.
Abstract
In this work, we present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors over the recently proposed neural radiance fields (NeRF). Unlike existing neural network based optimization method that relies on estimated correspondences, our method directly optimizes over implicit volumes, eliminating the challenging step of matching pixels in indoor scenes. The key to our approach is to utilize the learning-based priors to guide the optimization process of NeRF. Our system firstly adapts a monocular depth network over the target scene by finetuning on its sparse SfM reconstruction. Then, we show that the shape-radiance ambiguity of NeRF still exists in indoor environments and propose to address the issue by employing the adapted depth priors to monitor the sampling process of volume rendering. Finally, a per-pixel confidence map acquired by error computation on the rendered image can be used to further improve the depth quality. Experiments show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes, with surprising findings presented on the effectiveness of correspondence-based optimization and NeRF-based optimization over the adapted depth priors. In addition, we show that the guided optimization scheme does not sacrifice the original synthesis capability of neural radiance fields, improving the rendering quality on both seen and novel views. Code is available at https://github.com/weiyithu/NerfingMVS.
Year
DOI
Venue
2021
10.1109/ICCV48922.2021.00556
ICCV
DocType
Citations 
PageRank 
Conference
0
0.34
References 
Authors
0
6
Name
Order
Citations
PageRank
Yi Wei101.35
Shaohui Liu2202.64
Rao, Yongming3329.34
Wang Zhao400.34
Jiwen Lu53105153.88
Jie Zhou6925.64