Title
State estimation using a network of distributed observers with unknown inputs
Abstract
State estimation for a class of linear time-invariant systems with distributed output measurements (distributed sensors) and unknown inputs is addressed in this paper. The objective is to design a network of observers such that the state vector of the entire system can be estimated, while each observer has access to only local output measurements that may not be sufficient on their own to reconstruct the entire system's state. Existing results in the literature on distributed state estimation assume either that the system does not have inputs, or that all the system's inputs are globally known to all the observers. Accordingly, we address this gap by proposing a distributed observer capable of estimating the overall system's state in the presence of inputs, while each observer only has limited local information on inputs and outputs. We provide a design method that guarantees convergence of the estimation errors to zero under joint detectability conditions. This design suits undirected communication graphs that may have switching topologies and also applies to strongly connected directed graphs. We also give existence conditions that are consistent with existing results on unknown input observers. Finally, simulation results verify the effectiveness of the proposed estimation scheme for various scenarios.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Year
DOI
Venue
2022
10.1016/j.automatica.2022.110631
AUTOMATICA
Keywords
DocType
Volume
Distributed state estimation, Distributed systems, Unknown input observers
Journal
146
Issue
ISSN
Citations 
1
0005-1098
0
PageRank 
References 
Authors
0.34
0
4
Name
Order
Citations
PageRank
Guitao Yang101.01
Angelo Barboni200.68
Hamed Rezaee301.01
T Parisini4935113.17