Title
Leveraging Automated Unit Tests for Unsupervised Code Translation
Abstract
With little to no parallel data available for programming languages, unsupervised methods are well-suited to source code translation. However, the majority of unsupervised machine translation approaches rely on back-translation, a method developed in the context of natural language translation and one that inherently involves training on noisy inputs. Unfortunately, source code is highly sensitive to small changes; a single token can result in compilation failures or erroneous programs, unlike natural languages where small inaccuracies may not change the meaning of a sentence. To address this issue, we propose to leverage an automated unit-testing system to filter out invalid translations, thereby creating a fully tested parallel corpus. We found that fine-tuning an unsupervised model with this filtered data set significantly reduces the noise in the translations so-generated, comfortably outperforming the state-of-the-art for all language pairs studied. In particular, for Java $\to$ Python and Python $\to$ C++ we outperform the best previous methods by more than 16% and 24% respectively, reducing the error rate by more than 35%.
Year
Venue
Keywords
2022
International Conference on Learning Representations (ICLR)
unsupervised,translation,code,self-training,pseudo-labelling,unit tests,programming languages,deep learning,transformer
DocType
Citations 
PageRank 
Conference
0
0.34
References 
Authors
0
6
Name
Order
Citations
PageRank
Baptiste Rozière193.15
Jie M. Zhang200.34
François Charton311.36
Mark Harman410264389.82
Synnaeve Gabriel5215.12
Guillaume Lample665122.75