Title
Fastlas: Scalable Inductive Logic Programming Incorporating Domain-Specific Optimisation Criteria
Abstract
Inductive Logic Programming (ILP) systems aim to find a set of logical rules, called a hypothesis, that explain a set of examples. In cases where many such hypotheses exist, ILP systems often bias towards shorter solutions, leading to highly general rules being learned. In some application domains like security and access control policies, this bias may not be desirable, as when data is sparse more specific rules that guarantee tighter security should be preferred. This paper presents a new general notion of a scoring function over hypotheses that allows a user to express domain-specific optimisation criteria. This is incorporated into a new ILP system, called FastLAS, that takes as input a learning task and a customised scoring function, and computes an optimal solution with respect to the given scoring function. We evaluate the accuracy of FastLAS over real-world datasets for access control policies and show that varying the scoring function allows a user to target domain-specific performance metrics. We also compare FastLAS to state-of-the-art ILP systems, using the standard ILP bias for shorter solutions, and demonstrate that FastLAS is significantly faster and more scalable.
Year
Venue
DocType
2020
THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE
Conference
Volume
ISSN
Citations 
34
2159-5399
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Mark Law112.71
Alessandra Russo2102280.10
Elisa Bertino3140252128.50
krysia broda425532.16
Jorge Lobo533831.84