Title
Extraction and Discrimination of MBT Anomalies Possibly Associated with the Mw 7.3 Maduo (Qinghai, China) Earthquake on 21 May 2021
Abstract
Earthquakes are one of the most threatening natural disasters to human beings, and pre- and post-earthquake microwave brightness temperature (MBT) anomalies have attracted increasing attention from geosciences as well as remote sensing communities. However, there is still a lack of systematic description about how to extract and then discriminate the authenticity of seismic MBT anomalies. In this research, the first strong earthquake occurring near the northern edge of eastern Bayan Har block in nearly 20 years, the recent Mw 7.3 Maduo earthquake in Qinghai province, China on 21 May 2021, was selected as a case study. Based on the monthly mean background of MBT, the spatiotemporal features of MBT residuals with 10.65 GHz before and after the earthquake was firstly revealed. Referring to the spatial patterns and abnormal amplitudes of the results, four typical types of evident MBT positive residuals were obtained, and the time series of intensity features of each category was also quantitatively analyzed. Then, as the most influential factor on surface microwave radiation, air temperature, soil moisture and precipitation were analyzed to discriminate their contributions to these residuals. The fourth one, which occurred north to the epicenter after the earthquake, was finally confirmed to be caused by soil moisture reduction and thus ruled out as being related to seismicity. Therefore, the three retained typical MBT residuals with 10.65 GHz could be identified as possible anomalies associated with the Maduo earthquake, and were further analyzed collaboratively with some other reported abnormal phenomena related to the seismogenic process. Furthermore, through time series analysis, the MBT positive residuals inside the Bayan Har block were found to be more significant than that outside, and the abnormal behaviors of MBT residuals in the elevation range of 4000-5000 m reflected the shielding effect on microwave radiation from thawing permafrost on the plateau in March and April, 2021. This research provides a detailed technique to extract and discriminate the seismic MBT anomaly, and the revealed results reflect well the joint effect of seismic activity and regional coversphere environment on satellite-observed MBT.
Year
DOI
Venue
2021
10.3390/rs13224726
REMOTE SENSING
Keywords
DocType
Volume
Maduo earthquake, microwave brightness temperature, monthly mean background, seismic thermal anomaly, Bayan Har block, coversphere environment
Journal
13
Issue
Citations 
PageRank 
22
0
0.34
References 
Authors
0
7
Name
Order
Citations
PageRank
Yuan Qi102.37
Lixin Wu29435.60
Yifan Ding311.71
Yingjia Liu400.68
Shuai Chen500.34
Xiao Wang600.68
Wenfei Mao701.01