Title
Guarantees for Existence of a Best Canonical Polyadic Approximation of a Noisy Low-Rank Tensor
Abstract
The canonical polyadic decomposition (CPD) of a low rank tensor plays a major role in data analysis and signal processing by allowing for unique recovery of underlying factors. However, it is well known that the low rank CPD approximation problem is ill-posed. That is, a tensor may fail to have a best rank $R$ CPD approximation when $R>1$. This article gives deterministic bounds for the existence of best low rank tensor approximations over $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$. More precisely, given a tensor $\mathcal{T} \in \mathbb{K}^{I \times I \times I}$ of rank $R \leq I$, we compute the radius of a Frobenius norm ball centered at $\mathcal{T}$ in which best $\mathbb{K}$-rank $R$ approximations are guaranteed to exist. In addition we show that every $\mathbb{K}$-rank $R$ tensor inside of this ball has a unique canonical polyadic decomposition. This neighborhood may be interpreted as a neighborhood of "mathematical truth" in with CPD approximation and computation is well-posed. In pursuit of these bounds, we describe low rank tensor decomposition as a ``joint generalized eigenvalue" problem. Using this framework, we show that, under mild assumptions, a low rank tensor which has rank strictly greater than border rank is defective in the sense of algebraic and geometric multiplicities for joint generalized eigenvalues. Bounds for existence of best low rank approximations are then obtained by establishing perturbation theoretic results for the joint generalized eigenvalue problem. In this way we establish a connection between existence of best low rank approximations and the tensor spectral norm. In addition we solve a "tensor Procrustes problem" which examines orthogonal compressions for pairs of tensors. The main results of the article are illustrated by a variety of numerical experiments.
Year
DOI
Venue
2022
10.1137/20M1381046
SIAM J. Matrix Anal. Appl.
DocType
Volume
Citations 
Journal
43
0
PageRank 
References 
Authors
0.34
0
2
Name
Order
Citations
PageRank
Eric Evert100.68
Lieven De Lathauwer23002226.72