Title
On-Line Multi-Frequency Electrical Resistance Tomography (mfERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide
Abstract
An on-line multi-frequency electrical resistance tomography (mfERT) device with a melt-resistive sensor and noise reduction hardware has been proposed for crystalline phase imaging in high-temperature molten oxide. The melt-resistive sensor consists of eight electrodes made of platinum-rhodium (Pt-20mass%Rh) alloy covered by non-conductive aluminum oxide (Al2O3) to prevent an electrical short. The noise reduction hardware has been designed by two approaches: (1) total harmonic distortion (THD) for the robust multiplexer, and (2) a current injection frequency pair: low fL and high fH, for thermal noise compensation. THD is determined by a percentage evaluation of k-th harmonic distortions of ZnO at f=0.1~10,000 Hz. The fL and fH are determined by the thermal noise behavior estimation at different temperatures. At f < 100 Hz, the THD percentage is relatively high and fluctuates; otherwise, THD dramatically declines, nearly reaching zero. At the determined fL & GE; 10,000 Hz and fH & AP; 1,000,000 Hz, thermal noise is significantly compensated. The on-line mfERT was tested in the experiments of a non-conductive Al2O3 rod dipped into conductive molten zinc-borate (60ZnO-40B(2)O(3)) at 1000~1200 & DEG;C. As a result, the on-line mfERT is able to reconstruct the Al2O3 rod inclusion images in the high-temperature fields with low error, sigma fL, T = 5.99%, at 1000 & DEG;C, and an average error & LANGBRAC;sigma fL & rang; = 9.2%.
Year
DOI
Venue
2022
10.3390/s22031025
SENSORS
Keywords
DocType
Volume
multi-frequency electrical resistance tomography, total harmonic distortion, thermal noise, molten oxide, crystalline phase imaging
Journal
22
Issue
ISSN
Citations 
3
1424-8220
0
PageRank 
References 
Authors
0.34
0
8