Title
DePo: Dynamically Offload Expensive Event Processing to the Edge of Cyber-Physical Systems
Abstract
Event processing is one of the cornerstones to manage massive data streams in Cyber-Physical Systems (CPS). Due to CPS applications' increasing complexity, detecting highly complicated events ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">aka</i> . “expensive” events) leads to significant performance degradation, particularly harmful to mission-critical systems. To tackle this challenge, we define a new task - dynamic event processing offloading to CPS-edges. This paper proves the problem NP-hard and proposes a solution - <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DePo</monospace> . <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DePo</monospace> splits the expensive events into sub-models and offloads them to CPS edges. We design a long and short-term event memory mechanism in <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DePo</monospace> that enables the edges and server to process expensive events collaboratively within their capabilities. Besides, we propose a concept called Edge Utility to measure the optimality of offloading schemes. A heuristic algorithm is presented in this study to guide how to dispatch events to edges, thereby helping <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DePo</monospace> generate a sub-optimal solution in polynomial computational complexity. Our extensive experiments show that the performance gap between <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DePo</monospace> and the optimal benchmark is less than 5%. <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DePo</monospace> effectively reduces more than 40% redundant states and provides over 100% higher throughput than state-of-the-art approaches. Experimental results verified the high stability and scalability of <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DePo</monospace> , especially when dealing with a large number of expensive events.
Year
DOI
Venue
2022
10.1109/TPDS.2021.3135441
IEEE Transactions on Parallel and Distributed Systems
Keywords
DocType
Volume
Complex event processing,edge computing,cyber-physical systems,task offloading
Journal
33
Issue
ISSN
Citations 
9
1045-9219
0
PageRank 
References 
Authors
0.34
0
3
Name
Order
Citations
PageRank
Meng Ma18212.29
Jingbin Zhang200.34
Ping Wang300.34