Title
ViSTA: Vision and Scene Text Aggregation for Cross-Modal Retrieval
Abstract
Visual appearance is considered to be the most important cue to understand images for cross-modal retrieval, while sometimes the scene text appearing in images can provide valuable information to understand the visual semantics. Most of existing cross-modal retrieval approaches ignore the usage of scene text information and directly adding this information may lead to performance degradation in scene text free scenarios. To address this issue, we propose a full transformer architecture to unify these cross-modal retrieval scenarios in a single Vision and Scene Text Aggregation framework (ViSTA). Specifically, ViSTA utilizes transformer blocks to directly encode image patches and fuse scene text embedding to learn an aggregated visual representation for cross-modal retrieval. To tackle the modality missing problem of scene text, we propose a novel fusion token based transformer aggregation approach to exchange the necessary scene text information only through the fusion token and concentrate on the most important features in each modality. To further strengthen the visual modality, we develop dual contrastive learning losses to embed both image-text pairs and fusion-text pairs into a common cross-modal space. Compared to existing methods, ViSTA enables to aggregate relevant scene text semantics with visual appearance, and hence improve results under both scene text free and scene text aware scenarios. Experimental results show that ViSTA outperforms other methods by at least 8.4% at Recall@ 1 for scene text aware retrieval task. Compared with state-of-the-art scene text free retrieval methods, ViSTA can achieve better accuracy on Flicker30K and MSCOCO while running at least three times faster during the inference stage, which validates the effectiveness of the proposed framework.
Year
DOI
Venue
2022
10.1109/CVPR52688.2022.00512
IEEE Conference on Computer Vision and Pattern Recognition
Keywords
DocType
Volume
Vision + language, Recognition: detection,categorization,retrieval
Conference
2022
Issue
Citations 
PageRank 
1
0
0.34
References 
Authors
0
11
Name
Order
Citations
PageRank
Mengjun Cheng100.34
Yipeng Sun231.38
Longchao Wang300.34
Xiongwei Zhu400.34
Kun Yao500.68
Jie Chen639265.58
Guoli Song700.68
Junyu Han88511.12
jingtuo liu9479.43
Er-rui Ding1014229.31
Jingdong Wang1100.34