Title
Gait Recognition in the Wild with Dense 3D Representations and A Benchmark
Abstract
Existing studies for gait recognition are dominated by 2D representations like the silhouette or skeleton of the human body in constrained scenes. However, humans live and walk in the unconstrained 3D space, so projecting the 3D human body onto the 2D plane will discard a lot of crucial information like the viewpoint, shape, and dynamics for gait recognition. Therefore, this paper aims to explore dense 3D representations for gait recognition in the wild, which is a practical yet neglected problem. In particular, we propose a novel framework to explore the 3D Skinned Multi-Person Linear (SMPL) model of the human body for gait recognition, named SMPLGait. Our framework has two elaborately-designed branches of which one extracts appearance features from silhouettes, the other learns knowledge of 3D viewpoints and shapes from the 3D SMPL model. In addition, due to the lack of suitable datasets, we build the first large-scale 3D representation-based gait recognition dataset, named Gait3D. It contains 4,000 subjects and over 25,000 sequences extracted from 39 cameras in an unconstrained indoor scene. More importantly, it provides 3D SMPL models recovered from video frames which can provide dense 3D information of body shape, viewpoint, and dynamics. Based on Gait3D, we comprehensively compare our method with existing gait recognition approaches, which reflects the superior performance of our framework and the potential of 3D representations for gait recognition in the wild. The code and dataset are available at: https://gait3d.github.io.
Year
DOI
Venue
2022
10.1109/CVPR52688.2022.01959
IEEE Conference on Computer Vision and Pattern Recognition
Keywords
DocType
Volume
Biometrics, Datasets and evaluation
Conference
2022
Issue
Citations 
PageRank 
1
0
0.34
References 
Authors
0
6
Name
Order
Citations
PageRank
Jinkai Zheng131.42
Xinchen Liu2999.07
Wu Liu327534.53
Lingxiao He4134.24
Chenggang Yan541032.87
Tao Mei64702288.54