Title
Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Abstract
Deep learning (DL) techniques are proven effective in many challenging tasks, and become widely-adopted in practice. However, previous work has shown that DL libraries, the basis of building and executing DL models, contain bugs and can cause severe consequences. Unfortunately, existing testing approaches still cannot comprehensively exercise DL libraries. They utilize existing trained models and only detect bugs in model inference phase. In this work we propose Muffin to address these issues. To this end, Muffin applies a specifically-designed model fuzzing approach, which allows it to generate diverse DL models to explore the target library, instead of relying only on existing trained models. Muffin makes differential testing feasible in the model training phase by tailoring a set of metrics to measure the inconsistencies between different DL libraries. In this way, Muffin can best exercise the library code to detect more bugs. To evaluate the effectiveness of Muffin, we conduct experiments on three widely-used DL libraries. The results demonstrate that Muffin can detect 39 new bugs in the latest release versions of popular DL libraries, including Tensorflow, CNTK, and Theano.
Year
DOI
Venue
2022
10.1145/3510003.3510092
2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022)
Keywords
DocType
ISSN
Deep Learning Testing, Library Testing, Model Generation, Fuzzing
Conference
0270-5257
Citations 
PageRank 
References 
0
0.34
0
Authors
4
Name
Order
Citations
PageRank
Jiazhen Gu100.34
Xuchuan Luo200.34
Yangfan Zhou323229.72
Xin Wang444559.14