Title
Inner Dynamic Detection and Prediction of Water Quality Based on CEEMDAN and GA-SVM Models
Abstract
Urban water quality is facing strongly adverse degradation in rapidly developing areas. However, there exists a huge challenge to estimating the inner features and predicting the variation of long-term water quality due to the lack of related monitoring data and the complexity of urban water systems. Fortunately, multi-remote sensing data, such as nighttime light and evapotranspiration (ET), provide scientific data support and reasonably reveal the variation mechanisms. Here, we develop an integrated decomposition-reclassification-prediction method for water quality by integrating the CEEMDN method, the RF method mothed, and the genetic algorithm-support vector machine model (GA-SVM). The degression of the long-term water quality was decomposed and reclassified into three different frequency terms, i.e., high-frequency, low-frequency, and trend terms, to reveal the inner mechanism and dynamics in the CEEMDAN method. The RF method was then used to identify the teleconnection and the significance of the selected driving factors. More importantly, the GA-SVM model was designed with two types of model schemes, which were the data-driven model (GA-SVMd) and the integrated CEEMDAN-GA-SVM model (defined as GA-SVMc model), in order to predict urban water quality. Results revealed that the high-frequency terms for NH3-N and TN had a major contribution to the water quality and were mainly dominated by hydrometeorological factors such as ET, rainfall, and the dynamics of the lake water table. The trend terms revealed that the water quality continuously deteriorated during the study period; the terms were mainly regulated by the land use and land cover (LULC), land metrics, population, and yearly rainfall. The predicting results confirmed that the integrated GA-SVMc model had better performance than single data-driven models (such as the GA-SVM model). Our study supports that the integrated method reveals variation rules in water quality and provides early warning and guidance for reducing the water pollutant concentration.
Year
DOI
Venue
2022
10.3390/rs14071714
REMOTE SENSING
Keywords
DocType
Volume
CEEMDAN method, GA-SVM model, decomposition, prediction, water quality
Journal
14
Issue
ISSN
Citations 
7
2072-4292
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Zhizhou Yang100.34
Lei Zou2116168.43
Jun Xia3227.46
Yunfeng Qiao400.68
Diwen Cai500.68