Title
Discrete Cosine Transform Network for Guided Depth Map Super-Resolution
Abstract
Guided depth super-resolution (GDSR) is an essential topic in multi-modal image processing, which reconstructs high-resolution (HR) depth maps from low-resolution ones collected with suboptimal conditions with the help of HR RGB images of the same scene. To solve the challenges in interpreting the working mechanism, extracting cross-modal features and RGB texture over-transferred, we propose a novel Discrete Cosine Transform Network (DCTNet) to alleviate the problems from three aspects. First, the Discrete Cosine Transform (DCT) module reconstructs the multi-channel HR depth features by using DCT to solve the channel-wise optimization problem derived from the image domain. Second, we introduce a semi-coupled feature extraction module that uses shared convolutional kernels to extract common information and private kernels to extract modality-specific information. Third, we employ an edge attention mechanism to highlight the contours informative for guided upsampling. Extensive quantitative and qualitative evaluations demonstrate the effectiveness of our DCTNet, which outperforms previous state-of-the-art methods with a relatively small number of parameters. The code is available at https://github.com/Zhaozixiang1228/GDSR-DCTNet.
Year
DOI
Venue
2022
10.1109/CVPR52688.2022.00561
IEEE Conference on Computer Vision and Pattern Recognition
Keywords
DocType
Volume
Low-level vision, Computational photography
Conference
2022
Issue
Citations 
PageRank 
1
0
0.34
References 
Authors
0
5
Name
Order
Citations
PageRank
Zixiang Zhao1155.50
Jiangshe Zhang271761.11
Shuang Xu327432.53
Lin Zudi402.37
Hanspeter Pfister55933340.59