Title
Evaluating Landsat-8 and Sentinel-2 Data Consistency for High Spatiotemporal Inland and Coastal Water Quality Monitoring
Abstract
The synergy of fine-to-moderate-resolutin (i.e., 10-60 m) satellite data of the Landsat-8 Operational Land Imager (OLI) and the Sentinel-2 Multispectral Instrument (MSI) provides a possibility to monitor the dynamics of sensitive aquatic systems. However, it is imperative to assess the spectral consistency of both sensors before developing new algorithms for their combined use. This study evaluates spectral consistency between OLI and MSI-A/B, mainly in terms of the top-of-atmosphere reflectance (rho(t)), Rayleigh-corrected reflectance (rho(rc)), and remote-sensing reflectance (R-rs). To check the spectral consistency under various atmospheric and aquatic conditions, near-simultaneous same-day overpass images of OLI and MSI-A/B were selected over diverse coastal and inland areas across Mainland China and Hong Kong. The results showed that spectral data obtained from OLI and MSI-A/B were consistent. The difference in the mean absolute percentage error (MAPE) of the OLI and MSI-A products was similar to 8% in rho(t) and similar to 10% in both rho(rc) and R-rs for all the matching bands, whereas the MAPE for OLI and MSI-B was similar to 3.7% in rho(t), similar to 5.7% in rho(rc), and similar to 7.5% in R-rs for all visible bands except the ultra-blue band. Overall, the green band was the most consistent, with the lowest MAPE of <= 4.6% in all the products. The linear regression model suggested that product difference decreased significantly after band adjustment with the highest reduction rate in R-rs (NIR band) and R-rs (red band) for the OLI-MSI-A and OLI-MSI-B comparison, respectively. Further, this study discussed the combined use of OLI and MSI-A/B data for (i) time series of the total suspended solid concentrations (TSS) over coastal and inland waters; (ii) floating algae area comparison; and (iii) tracking changes in coastal floating algae (FA). Time series analysis of the TSS showed that seasonal variation was well-captured by the combined use of sensors. The analysis of the floating algae bloom area revealed that the algae area was consistent, however, the difference increases as the time difference between the same-day overpasses increases. Furthermore, tracking changes in coastal FA over two months showed that thin algal slicks (width < 500 m) can be detected with an adequate spatial resolution of the OLI and the MSI.
Year
DOI
Venue
2022
10.3390/rs14133155
REMOTE SENSING
Keywords
DocType
Volume
spectral adjustment, water-leaving reflectance, TSS concentration, floating algae bloom, time series, water quality, Landsat, Sentinel
Journal
14
Issue
ISSN
Citations 
13
2072-4292
0
PageRank 
References 
Authors
0.34
0
4
Name
Order
Citations
PageRank
Sidrah Hafeez111.36
Man Sing Wong22011.83
Sawaid Abbas300.34
Muhammad Asim400.34