Title
Deep Learning using Pre-Brachytherapy MRI to Automatically Predict Applicator Induced Complex Uterine Deformation.
Abstract
This novel deep-learning (DL) algorithm addresses the challenging task of predicting uterine shape and location when deformed from its natural anatomy by the presence of an intrauterine (tandem)/intravaginal (ring) applicator during brachytherapy (BT) treatment for locally advanced cervical cancer. Paired pelvic MRI datasets from 92 subjects, acquired without (pre-BT) and with (at-BT) applicators, were used. We propose a novel automated algorithm to segment the uterus in pre-BT MR images using a deep convolutional neural network (CNN) incorporated with autoencoders. The proposed neural net is based on a pre-trained CNN Inception V4 architecture. It predicts a compressed vector by applying a multi-layer autoencoder, which is then back-projected into the segmentation contour of the uterus. Following this, another transfer learning approach using a modified U-net model is employed to predict the at-BT uterus shape from pre-BT MRI. The complex and large deformations of the uterus are quantified using free form deformation method. The proposed algorithm yielded an average Dice Coefficient (DC) of 94.1±3.3 and an average Hausdorff Distance (HD) of 4.0±3.1 mm compared to the manually defined ground truth by expert clinicians. Further, the modified U-net prediction of the at-BT uterus resulted in a DC accuracy of 88.1±3.8 and HD of 5.8±3.6 mm. The mean uterine surface point-to-point displacement was 25.0 [10.0-62.5] mm from the pre-BT position. Our unique DL method can thus successfully predict tandem-deformed uterine shape and position from MR images taken before the BT implant procedure i.e. without the applicator in place. Clinical relevance-The proposed DL-based framework can be incorporated as an automatic prediction tool of uterine deformation due to applicator insertion for personalized BT treatments. It holds promise for more streamlined clinical/technical decision-making before BT applicator insertion resulting in improved dosimetric outcomes.
Year
DOI
Venue
2022
10.1109/EMBC48229.2022.9871157
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
DocType
Volume
ISSN
Conference
2022
2694-0604
Citations 
PageRank 
References 
0
0.34
0
Authors
5
Name
Order
Citations
PageRank
Shrimanti Ghosh101.35
Kumaradevan Punithakumar201.01
Fleur Huang300.34
Geetha Menon400.34
Pierre Boulanger511.44