Title
EEG Channel Selection for Person Identification Using Binary Grey Wolf Optimizer
Abstract
Electroencephalogram signals (EEG) have provided biometric identification systems with great capabilities. Several studies have shown that EEG introduces unique and universal features besides specific strength against spoofing attacks. Essentially, EEG is a graphic recording of the brain's electrical activity calculated by sensors (electrodes) on the scalp at different spots, but their best locations are uncertain. In this paper, the EEG channel selection problem is formulated as a binary optimization problem, where a binary version of the Grey Wolf Optimizer (BGWO) is used to find an optimal solution for such an NP-hard optimization problem. Further, a Support Vector Machine classifier with a Radial Basis Function kernel (SVM-RBF) is then considered for EEG-based biometric person identification. For feature extraction purposes, we examine three different auto-regressive coefficients. A standard EEG motor imagery dataset is employed to evaluate the proposed method, including four criteria: (i) Accuracy, (ii) F-Score, (iii) Recall, and (v) Specificity. In the experimental results, the proposed method (named BGWO-SVM) obtained 94.13% accuracy using only 23 sensors with 5 auto-regressive coefficients. Besides, BGWO-SVM finds electrodes not too close to each other to capture relevant information all over the head. As concluding remarks, BGWO-SVM achieved the best results concerning the number of selected channels and competitive classification accuracies against other meta-heuristics algorithms.
Year
DOI
Venue
2022
10.1109/ACCESS.2021.3135805
IEEE ACCESS
Keywords
DocType
Volume
Electroencephalography, Electrodes, Sensors, Support vector machines, Iris recognition, Authentication, Visualization, EEG, biometric, channels selection, Grey Wolf Optimizer, identification, binary optimization
Journal
10
ISSN
Citations 
PageRank 
2169-3536
0
0.34
References 
Authors
0
10