Title
On Multimarginal Partial Optimal Transport: Equivalent Forms and Computational Complexity
Abstract
We study the multimarginal partial optimal transport (POT) problem between m discrete (unbalanced) measures with at most n supports. We first prove that we can obtain two equivalent forms of the multimarginal POT problem in terms of the multimarginal optimal transport problem via novel extensions of cost tensors. The first equivalent form is derived under the assumptions that the total masses of each measure are sufficiently close while the second equivalent form does not require any conditions on these masses but at the price of more sophisticated extended cost tensor. Our proof techniques for obtaining these equivalent forms rely on novel procedures of moving masses in graph theory to push transportation plan into appropriate regions. Finally, based on the equivalent forms, we develop an optimization algorithm, named the ApproxMPOT algorithm, that builds upon the Sinkhorn algorithm for solving the entropic regularized multimarginal optimal transport. We demonstrate that the ApproxMPOT algorithm can approximate the optimal value of multimarginal POT problem with a computational complexity upper bound of the order (O) over tilde (m(3)(n + 1)(m)/epsilon(2)) where epsilon > 0 stands for the desired tolerance.
Year
Venue
DocType
2022
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151
Conference
Volume
ISSN
Citations 
151
2640-3498
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Khang Le101.01
Huy Nguyen200.34
Khai Nguyen300.34
Tung Pham400.34
Nhat Ho557.87