Title
Trainer: An Energy-Efficient Edge-Device Training Processor Supporting Dynamic Weight Pruning
Abstract
Transfer learning, which transfers knowledge from source datasets to target datasets, is practical for adaptive deep neural network (DNN) applications. When considering user privacy and communication bandwidth issues, edge devices’ training is essential for transfer learning. Nevertheless, training requires repeating feedforward (FF), backpropagation (BP), and weight gradient (WG) millions of times, introducing prohibitive computation for edge devices. A promising method to reduce training computation is sparse DNN training (SDT), which dynamically prunes weights during training iterations and performs FF, BP, and WG only with unpruned weights. However, SDT suffers implicit redundancy and reuse imbalance for convolution layers. Besides, it turns bottlenecks into batch normalization (BN) layers. Therefore, it is challenging to achieve energy-efficient SDT computing. This article proposes a processor, Trainer, solving the above challenges with three features. First, a speculation mechanism removes implicit redundant operations, which have nonzeros’ input, weight, or output, but are ineffective for training. Second, a dynamic sparsity adaptive dataflow tackles the reuse imbalance, improving energy efficiency (EE) for dynamic sparse convolution in SDT. Third, a computational dependence decoupled BN unit eliminates BN’s repeated data access to reduce training energy and time. Trainer is fabricated in 28-nm CMOS technology and occupies 20.96 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> of area. It achieves a peak EE of 173.28TFLOPS/W@FP16 (276.55TFLOPS/W@FP8) for a 90% activation sparsity and 90% weight sparsity. The sparsity to EE conversion ratio is 80.9, outperforming the previous work by 1.55 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> . When training a ResNet18 model with SDT, Trainer reduces energy by 2.23 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> and time by 1.76 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> than the state-of-the-art sparse training processor.
Year
DOI
Venue
2022
10.1109/JSSC.2022.3174411
IEEE Journal of Solid-State Circuits
Keywords
DocType
Volume
Batch normalization (BN),deep neural network (DNN),processor,sparse training,sparsity,weight pruning
Journal
57
Issue
ISSN
Citations 
10
0018-9200
0
PageRank 
References 
Authors
0.34
5
9
Name
Order
Citations
PageRank
Yang Wang138151.96
Yubin Qin212.04
Dazheng Deng301.69
Jingchuan Wei400.34
Tianbao Chen551.20
Xinhan Lin600.34
leibo liu7816116.95
Shaojun Wei8555102.32
shouyi yin957999.95