Title
Search advertising using web relevance feedback
Abstract
The business of Web search, a $10 billion industry, relies heavily on sponsored search, whereas a few carefully-selected paid advertisements are displayed alongside algorithmic search results. A key technical challenge in sponsored search is to select ads that are relevant for the user's query. Identifying relevant ads is challenging because queries are usually very short, and because users, consciously or not, choose terms intended to lead to optimal Web search results and not to optimal ads. Furthermore, the ads themselves are short and usually formulated to capture the reader's attention rather than to facilitate query matching. Traditionally, matching of ads to queries employed standard information retrieval techniques using the bag of words approach. Here we propose to go beyond the bag of words, and augment both queries and ads with additional knowledge-rich features. We use Web search results initially returned for the query to create a pool of relevant documents. Classifying these documents with respect to an external taxonomy and identifying salient named entities give rise to two new feature types. Empirical evaluation based on over 9,000 query-ad pairwise judgments confirms that using augmented queries produces highly relevant ads. Our methodology also relaxes the requirement for each ad to explicitly specify the exhaustive list of queries ("bid phrases") that can trigger it.
Year
DOI
Venue
2008
10.1145/1458082.1458217
CIKM
Keywords
Field
DocType
web relevance feedback,search advertising,additional knowledge-rich feature,relevant document,web search,augmented query,bid phrase,query matching,algorithmic search result,web search result,relevant ad,words approach,online advertising,relevance
Search advertising,Bag-of-words model,Web search query,Pairwise comparison,Data mining,Relevance feedback,Information retrieval,Semantic search,Computer science,Web query classification,Online advertising
Conference
Citations 
PageRank 
References 
61
2.43
40
Authors
6
Name
Order
Citations
PageRank
Andrei Broder17357920.20
Peter Ciccolo22067.73
Marcus Fontoura3111661.74
Evgeniy Gabrilovich44573224.48
Vanja Josifovski52265148.84
Lance Riedel645419.42