Title
Design and control of a planar bipedal robot ERNIE with parallel knee compliance
Abstract
This paper presents the development of the planar bipedal robot ERNIE as well as numerical and experimental studies of the influence of parallel knee joint compliance on the energetic efficiency of walking in ERNIE. ERNIE has 5 links—a torso, two femurs and two tibias—and is configured to walk on a treadmill so that it can walk indefinitely in a confined space. Springs can be attached across the knee joints in parallel with the knee actuators. The hybrid zero dynamics framework serves as the basis for control of ERNIE’s walking. In the investigation of the effects of compliance on the energetic efficiency of walking, four cases were studied: one without springs and three with springs of different stiffnesses and preloads. It was found that for low-speed walking, the addition of soft springs may be used to increase energetic efficiency, while stiffer springs decrease the energetic efficiency. For high-speed walking, the addition of either soft or stiff springs increases the energetic efficiency of walking, while stiffer springs improve the energetic efficiency more than do softer springs.
Year
DOI
Venue
2008
10.1007/s10514-008-9096-5
Autonomous Robots
Keywords
Field
DocType
knee actuators,bipedal robot · ernie · design · control · walking · parallel knee compliance · energetic efficiency of walking,low-speed walking,high-speed walking,soft spring,joint compliance,knee joint,stiffer spring,energetic efficiency,parallel knee compliance,parallel knee,planar bipedal robot ernie,design,control
Torso,Simulation,Computer science,Planar,Knee Joint,Treadmill,Robot,Actuator
Journal
Volume
Issue
ISSN
25
4
0929-5593
Citations 
PageRank 
References 
20
1.30
26
Authors
4
Name
Order
Citations
PageRank
T. Yang1312.01
E. R. Westervelt243331.07
J. P. Schmiedeler3372.62
R. A. Bockbrader4201.30