Title
Decoupled torque control of tendon-driven fingers with tension management
Abstract
To facilitate human assembly tasks, Robonaut 2 is equipped with a dexterous, compact hand featuring fingers driven remotely by tendons. This work outlines the force-control strategy for the fingers, which are actuated by an 芒聙聹n + 1芒聙聺 tendon arrangement. Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, in other words, in the tendon space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint space of the finger. A joint-space torque control law is proposed here that demonstrates a decoupled response with a faster settling time than an equivalent tendon-space formulation. In addition, a tension distribution algorithm is presented here to translate joint torque commands into tendon tensions. It guarantees that each tendon tension respects both an upper and a lower bound, using an efficient, finitely-convergent algorithm. These two contributions provide for a compliant, well-controlled hand, aptly suited for unstructured interaction.
Year
DOI
Venue
2013
10.1177/0278364912468302
I. J. Robotic Res.
Keywords
Field
DocType
Force control,tendon actuation,multifingered hands,manipulation,humanoid robots
Torque,Kinematics,Coupling,Robonaut,Upper and lower bounds,Simulation,Settling time,Control theory,Control engineering,Mathematics,Tendon,Humanoid robot
Journal
Volume
Issue
ISSN
32
2
0278-3649
Citations 
PageRank 
References 
3
0.45
9
Authors
5
Name
Order
Citations
PageRank
Muhammad E. Abdallah11179.15
Robert Platt217919.34
Charles W. Wampler341044.13
AbdallahMuhammad E430.45
WamplerCharles W530.45