Title
Building virtual ecosystems from artificial chemistry
Abstract
This paper adopts an interdisciplinary view of the significant elements of ecosystems and the methods by which these might be simulated to explore theoretical issues of relevance to Artificial Life and Ecology. Artificial Life has largely been concerned with evolutionary ecosystems of agents in trivial environments. Ecology commonly produces models of specific habitats and organism populations unsuited to general exploration of theoretical issues. We propose that limitations of the simulations in these disciplines can be overcome by simulating ecosystems from the level of artificial chemistry. We demonstrate the approach's feasibility by describing several virtual organisms represented at this level. The organisms automatically adopt trophic levels, generate energy from chemical bonds and transform material elements in the process. Virtual organisms may interact with one another and their abiotic environment using the same chemistry. Biosynthesis and decay may also be simulated through this mechanism.
Year
DOI
Venue
2007
10.1007/978-3-540-74913-4_11
ECAL
Keywords
Field
DocType
evolutionary ecosystem,abiotic environment,virtual ecosystem,general exploration,chemical bond,artificial chemistry,virtual organism,interdisciplinary view,trophic level,theoretical issue,artificial life
Artificial life,Trophic level,Ecology,Artificial chemistry,Biochemical engineering,Computer science,Artificial intelligence,Machine learning,Abiotic component,Ecosystem,Organism
Conference
Volume
ISSN
Citations 
4648
0302-9743
6
PageRank 
References 
Authors
0.59
5
2
Name
Order
Citations
PageRank
Alan Dorin114721.93
Kevin B. Korb240052.03