Title
Evaluating memory energy efficiency in parallel I/O workloads
Abstract
Power consumption is an important issue for cluster supercomputers as it directly affects their running cost and cooling requirements. This paper investigates the memory energy efficiency of high-end data servers used for supercomputers. Emerging memory technologies allow memory devices to dynamically adjust their power states. To achieve maximum energy saving, the memory management on data servers needs to judiciously utilize these energy-aware devices. As we explore different management schemes under four real-world parallel I/O workloads, we find that the memory energy consumption is determined by a complex interaction among four important factors: (1) cache hit rates that may directly translate performance gain into energy saving, (2) cache populating schemes that perform buffer allocation and affect access locality at the chip level, (3) request clustering that aims to temporally align memory transfers from different buses into the same memory chips, and (4) access patterns in workloads that affect the first three factors.
Year
DOI
Venue
2007
10.1109/CLUSTR.2007.4629213
CLUSTER
Keywords
Field
DocType
memory device,align memory transfer,maximum energy saving,energy saving,memory energy efficiency,memory management,o workloads,emerging memory technology,memory energy consumption,memory chip,energy efficiency,energy efficient,algorithm design and analysis,clustering algorithms,benchmark testing,servers,chip
Interleaved memory,Uniform memory access,Shared memory,Physical address,Computer science,Parallel computing,Cache-only memory architecture,Real-time computing,Memory management,Non-uniform memory access,Flat memory model,Distributed computing
Conference
Citations 
PageRank 
References 
13
0.61
26
Authors
3
Name
Order
Citations
PageRank
Jianhui Yue11489.53
Yifeng Zhu251335.33
Zhao Cai3407.37