Title
Design and kinematics simulation for bionic crank-slider mechanism of jumping robot.
Abstract
Jumping locomotion is an ideal means of overcoming obstacles and traversing rough terrain. By taking inspirations from the locust, this paper presents the development and analysis of a novel crank-slider jumping mechanism. Firstly, the locust morphology is described and the posture of hindlimbs at take-off phase is analyzed. Base on that, a crank-slider mechanism is proposed to mimic the locust hindlimb. The mechanical analysis shows that the ground reaction force is similar to that of the locust during take-off stage, which reduce the possibility of premature lift-off and lays the foundation for developing the small jumping robot. Then, the designed robot employs elastic elements in the crank-slider mechanism, which is triggered by the segment-gear system. At last, its jumping performance is verified by kinematic modeling.
Year
DOI
Venue
2012
10.1109/ROBIO.2012.6491065
ROBIO
Field
DocType
ISBN
Crank,Locust,Kinematics,Jumping,Simulation,Control theory,Control engineering,Ground reaction force,Engineering,Slider,Robot,Traverse
Conference
978-1-4673-2125-9
Citations 
PageRank 
References 
0
0.34
7
Authors
4
Name
Order
Citations
PageRank
Kai Zhao100.34
Junmao Yin200.34
Dian-Sheng Chen33411.70
Tianmiao Wang432268.45