Title
Arthrodial joint markerless cross-parameterization and biomechanical visualization.
Abstract
Abstract-Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task.
Year
DOI
Venue
2007
10.1109/TVCG.2007.1063
IEEE transactions on visualization and computer graphics
Keywords
Field
DocType
kinematic data sets,biomechanics,biomedical visualization,arthrodial joints,articular cartilage transfer,image processing,cross-parameterization,pairwise shape correspondence,individual-specific geometry,biomechanics.,cadaver data,model distortion,data visualisation,image acquisition,biomechanical visualization,arthrodial joint,computer vision,medical computing,computer-vision-inspired markerless method,cross-data-set kinematics analysis
Computer vision,Pairwise comparison,Data visualization,Data set,Kinematics,Visualization,Computer science,Image processing,Artificial intelligence,Distortion,Manifold
Journal
Volume
Issue
ISSN
13
5
1077-2626
Citations 
PageRank 
References 
4
0.41
18
Authors
3
Name
Order
Citations
PageRank
G Elisabeta Marai113620.43
Cindy M. Grimm276377.55
David H. Laidlaw31781234.58