Title
Hybrid control of the boost converter: Robust global stabilization
Abstract
In this paper we consider the modeling and (robust) control of a DC-DC boost converter. In particular, we derive a mathematical model consisting of a constrained switched differential inclusion that includes all possible modes of operation of the converter. The obtained model is carefully selected to be amenable for the study of various important robustness properties. By exploiting this model we design a control algorithm that induces robust, global asymptotic stability of a desired output voltage value. The guaranteed robustness properties ensure proper operation of the converter in the presence of spatial regularization to reduce the high rate of switching. The establishment of these properties is enabled by recent tools for the study of robust stability in hybrid systems. Simulations illustrating the main results are included.
Year
DOI
Venue
2013
10.1109/CDC.2013.6760442
Decision and Control
Keywords
Field
DocType
DC-DC power convertors,asymptotic stability,control system synthesis,robust control,DC-DC boost converter,boost converter,constrained switched differential inclusion,control algorithm design,global asymptotic stability,hybrid control system,mathematical model,robust control,robust global stabilization,spatial regularization
Boost converter,Differential inclusion,Computer science,Control theory,Voltage,Control engineering,Robustness (computer science),Exponential stability,Regularization (mathematics),Robust control,Hybrid system
Conference
ISSN
ISBN
Citations 
0743-1546
978-1-4673-5714-2
2
PageRank 
References 
Authors
0.47
5
4
Name
Order
Citations
PageRank
Thomas A. F. Theunisse1101.18
Jianyun Chai292.84
Ricardo G. Sanfelice321627.88
W. P. M. H. Heemels42436194.41