Title
A Radial Basis Function Network Approach To Approximate The Inverse Kinematics Of A Robotic System
Abstract
This paper presents a novel solution using a radial basis function network (RBFN) to approximate the inverse kinematics of a robotic system where the geometric parameters of the manipulator are unknown. Simulation and experimental results are presented for a three-link manipulator to demonstrate the effectiveness of the proposed approach. To achieve this level of performance, centres of hidden-layer units are regularly distributed in the workspace, constrained training data is used where inputs are collected approximately around the centre positions in the workspace and the training phase is performed using either strict interpolation or the least mean square algorithm. These proposed ideas have significantly improved the network's performance.
Year
DOI
Venue
2014
10.1504/IJMIC.2014.060005
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL
Keywords
Field
DocType
radial basis function network, RBFN, inverse kinematics, robotic manipulator, visual measurement system
Least mean squares filter,Radial basis function network,Radial basis function,Inverse kinematics,Control theory,Workspace,Interpolation,Robot kinematics,Control engineering,Artificial neural network,Mathematics
Journal
Volume
Issue
ISSN
21
2
1746-6172
Citations 
PageRank 
References 
0
0.34
11
Authors
3
Name
Order
Citations
PageRank
Bach H. Dinh100.34
M.W. Dunnigan2238.70
Zool H. Ismail393.79