Title
Infeasibility-free inverse kinematics method
Abstract
The problem of inverse kinematics is revisited in the present paper. The paper is focusing on the problem of solving the inverse kinematics problem while respecting velocity limits on both the robot's joints and the end-effector. Even-though the conventional inverse kinematics algorithms have been proven to be efficient in many applications, defining an admissible trajectory for the end-effector is still a burdensome task for the user, and the problem can easily become unsolvable. The main idea behind the proposed algorithms is to consider the sampling time as a free variable, hence adding more flexibility to the optimization problem associated with the inverse kinematics. We prove that the reformulated problem has always a solution if the end-effector path is in the reachable space of the robot, thus solving the problem of infeasibility of conventional inverse kinematics methods. To validate the proposed approach, we have conducted three simulations scenarios. The simulation results point that while the conventional inverse kinematics methods fail to track precisely a desired end-effector trajectory, the proposed algorithms always succeed.
Year
DOI
Venue
2015
10.1109/SII.2015.7404996
2015 IEEE/SICE International Symposium on System Integration (SII)
Keywords
Field
DocType
infeasibility-free inverse kinematics method,robot joints,end effector,optimization
Mathematical optimization,Kinematics equations,Inverse kinematics,321 kinematic structure,Robot kinematics,Inverse dynamics,Robot,Optimization problem,Trajectory,Mathematics
Conference
Citations 
PageRank 
References 
1
0.37
5
Authors
3
Name
Order
Citations
PageRank
Wael Suleiman1559.46
Fumio KANEHIRO22304204.18
Eiichi Yoshida352259.13