Title
A Model for the Metastability Delay of Sequential Elements.
Abstract
It is well known that every sequential element may become metastable when provided with marginal inputs, such as input transitions occurring too close or input voltage not reaching a defined HI or LO level. In this case the sequential element requires extra time to decide which digital output level to finally present, which is perceived as an output delay. The amount of this delay depends on how close the elements state is to the balance point, at which the delay may, theoretically, become infinite. While metastability can be safely avoided within a closed timing domain, it cannot be completely ruled out at timing domain boundaries. Therefore it is important to quantify its effect. Traditionally this is done by means of a "mean time between upsets" (MTBU) which gives the expected interval between two metastable upsets. The latter is defined as the event of latching the still undecided output of one sequential element by a subsequent one. However, such a definition only makes sense in a time-safe environment like a synchronous design. In this paper we will extend the scope to so-called value-safe environments, in which a sequential element can safely finalize its decision, since the subsequent one waits for completion before capturing its output. Here metastability is not a matter of "failure" but a performance issue, and hence characterization by MTBU is not intuitive. Therefore we will put the focus on the delay aspect and derive a suitable model. This model extends existing approaches by also including the area of very weak metastability and thus providing complete coverage. We will show its validity through comparison with transistor-level simulation results for the most popular sequential elements in different implementations, point out its relation to the traditional MTBU model parameters, namely tau and T-0, and show how to use it for calculating the performance penalty in a value-safe environment.
Year
DOI
Venue
2017
10.1142/S0218126617400102
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS
Keywords
Field
DocType
Comparison of metastability behaviors,metastability characterization,asynchronous logic,Muller C-element,RS-latch,mutex,model
Semaphore,Control theory,Computer science,Voltage,Metastability,Asynchronous circuit
Journal
Volume
Issue
ISSN
26
8
0218-1266
Citations 
PageRank 
References 
0
0.34
8
Authors
2
Name
Order
Citations
PageRank
Thomas Polzer1498.43
Andreas Steininger230849.17