Title
Kernel-predicting convolutional networks for denoising Monte Carlo renderings
Abstract
Regression-based algorithms have shown to be good at denoising Monte Carlo (MC) renderings by leveraging its inexpensive by-products (e.g., feature buffers). However, when using higher-order models to handle complex cases, these techniques often overfit to noise in the input. For this reason, supervised learning methods have been proposed that train on a large collection of reference examples, but they use explicit filters that limit their denoising ability. To address these problems, we propose a novel, supervised learning approach that allows the filtering kernel to be more complex and general by leveraging a deep convolutional neural network (CNN) architecture. In one embodiment of our framework, the CNN directly predicts the final denoised pixel value as a highly non-linear combination of the input features. In a second approach, we introduce a novel, kernel-prediction network which uses the CNN to estimate the local weighting kernels used to compute each denoised pixel from its neighbors. We train and evaluate our networks on production data and observe improvements over state-of-the-art MC denoisers, showing that our methods generalize well to a variety of scenes. We conclude by analyzing various components of our architecture and identify areas of further research in deep learning for MC denoising.
Year
DOI
Venue
2017
10.1145/3072959.3073708
ACM Trans. Graph.
Field
DocType
Volume
Kernel (linear algebra),Computer vision,Monte Carlo method,Weighting,Mathematical optimization,Computer science,Convolutional neural network,Filter (signal processing),Supervised learning,Artificial intelligence,Deep learning,Overfitting
Journal
36
Issue
ISSN
Citations 
4
0730-0301
24
PageRank 
References 
Authors
0.79
30
9
Name
Order
Citations
PageRank
Steve Bako1562.69
Thijs Vogels2361.64
McWilliams, Brian31055.90
Mark Meyer4120673.10
Jan Novák528617.42
Alex Harvill6240.79
Pradeep Sen788253.01
Tony DeRose81152136.22
Fabrice Rousselle927612.23