Title
Estimation of the Land Surface Temperature over the Tibetan Plateau by Using Chinese FY-2C Geostationary Satellite Data.
Abstract
During the process of land-atmosphere interaction, one of the essential parameters is the land surface temperature (LST). The LST has high temporal variability, especially in its diurnal cycle, which cannot be acquired by polar-orbiting satellites. Therefore, it is of great practical significance to retrieve LST data using geostationary satellites. According to the data of FengYun 2C (FY-2C) satellite and the measurements from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet), a regression approach was utilized in this research to optimize the split window algorithm (SWA). The thermal infrared data obtained by the Chinese geostationary satellite FY-2C over the Tibetan Plateau (TP) was used to estimate the hourly LST time series. To decrease the effects of cloud, the 10-day composite hourly LST data were obtained through the approach of maximal value composite (MVC). The derived LST was used to compare with the product of MODIS LST and was also validated by the field observation. The results show that the LST retrieved through the optimized SWA and in situ data has a better consistency (with correlation coefficient (R), mean absolute error (MAE), mean bias (MB), and root mean square error (RMSE) values of 0.987, 1.91 K, 0.83 K and 2.26 K, respectively) than that derived from Becker and Li's SWA and MODIS LST product, which means that the modified SWA can be applied to achieve plateau-scale LST. The diurnal variation of the LST and the hourly time series of the LST over the Tibetan Plateau were also obtained. The diurnal range of LST was found to be clearly affected by the influence of the thawing and freezing process of soil and the summer monsoon evolution. The comparison between the seasonal and diurnal variations of LST at four typical underlying surfaces over the TP indicate that the variation of LST is closely connected with the underlying surface types as well. The diurnal variation of LST is the smallest at the water (5.12 K), second at the snow and ice (5.45 K), third at the grasslands (19.82 K) and largest at the barren or sparsely vegetated (22.83 K).
Year
DOI
Venue
2018
10.3390/s18020376
SENSORS
Keywords
Field
DocType
FengYun 2C,split window algorithm,land surface temperature,the Tibetan Plateau
Plateau,Monsoon,Correlation coefficient,Analytical chemistry,Satellite,Diurnal temperature variation,Engineering,Climatology,Diurnal cycle,Snow,Geostationary orbit
Journal
Volume
Issue
ISSN
18
2.0
1424-8220
Citations 
PageRank 
References 
1
0.36
8
Authors
7
Name
Order
Citations
PageRank
Yuanyuan Hu110.70
Lei Zhong211.71
Yaoming Ma3124.44
Mijun Zou411.04
Kepiao Xu510.36
Ziyu Huang610.70
Lu Feng722.40