Title
Encoding Longer-Term Contextual Information with Predictive Coding and Ego-Motion.
Abstract
Studies suggest that, within the hierarchical architecture, the topological higher level possibly represents the scenarios of the current sensory events with slower changing activities. They attempt to predict the neural activities on the lower level by relaying the predicted information after the scenario of the sensorimotor event has been determined. On the other hand, the incoming sensory information corrects such prediction of the events on the higher level by the fast-changing novel or surprising signal. From this point, we propose a predictive hierarchical artificial neural network model that examines this hypothesis on neurorobotic platforms. It integrates the perception and action in the predictive coding framework. Moreover, in this neural network model, there are different temporal scales of predictions existing on different levels of the hierarchical predictive coding architecture, which defines the temporal memories in recording the events occurring. Also, both the fast- and the slow-changing neural activities are modulated by the motor action. Therefore, the slow-changing neurons can be regarded as the representation of the recent scenario which the sensorimotor system has encountered. The neurorobotic experiments based on the architecture were also conducted.
Year
DOI
Venue
2018
10.1155/2018/7609587
COMPLEXITY
Field
DocType
Volume
Temporal scales,Architecture,Id, ego and super-ego,Predictive coding,Artificial intelligence,Artificial neural network,Sensory system,Perception,Machine learning,Mathematics,Encoding (memory)
Journal
2018
ISSN
Citations 
PageRank 
1076-2787
0
0.34
References 
Authors
14
4
Name
Order
Citations
PageRank
Junpei Zhong1266.99
Angelo Cangelosi241975.30
Tetsuya Ogata31158135.73
Xinzheng Zhang4206.26