Title
An Lstm Network For Real-Time Odometry Estimation
Abstract
The use of 2D laser scanners is attractive for the autonomous driving industry because of its accuracy, light-weight and low-cost. However, since only a 21) slice of the surrounding environment is detected at each scan, it is a challenge to execute important tasks such as the localization of the vehicle. In this paper we present a novel framework that explores the use of deep Recurrent Convolutional Neural Networks (RCNN) for odometry estimation using only 21) laser scanners. The application of RCNNs provides the tools to not only extract the features of the laser scanner data using Convolutional Neural Networks (CNNs), but in addition it models the possible connections among consecutive scans using the Long Short-Term Memory (LSTM) Recurrent Neural Network. Results on a real road dataset show that the method can run in real-time without using CPU acceleration and have competitive performance compared to other methods, being an interesting approach that could complement traditional localization systems.
Year
DOI
Venue
2019
10.1109/IVS.2019.8814133
2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19)
Field
DocType
Volume
Computer vision,Laser scanning,Convolutional neural network,Simulation,Recurrent neural network,Odometry,Laser,Artificial intelligence,Acceleration,Engineering
Journal
abs/1902.08536
ISSN
Citations 
PageRank 
1931-0587
0
0.34
References 
Authors
0
3
Name
Order
Citations
PageRank
Michelle Valente101.69
Cyril Joly234.46
Arnaud de La Fortelle326431.52