Title
Using a Variable-Friction Robot Hand to Determine Proprioceptive Features for Object Classification During Within-Hand-Manipulation
Abstract
Interactions with an object during within-hand manipulation (WIHM) constitutes an assortment of gripping, sliding, and pivoting actions. In addition to manipulation benefits, the re-orientation and motion of the objects within-the-hand also provides a rich array of additional haptic information via the interactions to the sensory organs of the hand. In this article, we utilize variable friction (VF) robotic fingers to execute a rolling WIHM on a variety of objects, while recording `proprioceptive' actuator data, which is then used for object classification (i.e., without tactile sensors). Rather than hand-picking a select group of features for this task, our approach begins with 66 general features, which are computed from actuator position and load profiles for each object-rolling manipulation, based on gradient changes. An Extra Trees classifier performs object classification while also ranking each feature's importance. Using only the six most-important `Key Features' from the general set, a classification accuracy of 86% was achieved for distinguishing the six geometric objects included in our data set. Comparatively, when all 66 features are used, the accuracy is 89.8%.
Year
DOI
Venue
2020
10.1109/TOH.2019.2958669
IEEE Transactions on Haptics
Keywords
DocType
Volume
Friction,Hand,Humans,Machine Learning,Motor Activity,Proprioception,Robotics,Touch Perception
Journal
13
Issue
ISSN
Citations 
3
1939-1412
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Adam Spiers1708.99
Andrew Morgan2196.43
Krishnan Srinivasan300.68
Berk Çalli4343.38
Aaron M. Dollar51388124.25