Title
Three Dimensional Collision Avoidance for Multi Unmanned Aerial Vehicles Using Velocity Obstacle.
Abstract
Recently, multi-UAV systems are attracting growing interests. It offers wide range of applications in civilian and military environment, carrying out dangerous missions that manned aircraft cannot offer. Currently, an important challenge is the collision avoidance algorithm. The idea is to use the collision avoidance algorithm to control the multi-UAV systems. This will guarantee the safety of the UAVs. The UAVs will complete the missions without colliding with any moving or static obstacles. This topic has motivated the development of various collision avoidance algorithms. In this paper, we proposed some improvements on the three-dimensional velocity obstacle algorithm proposed in Jenie et al. (J. Guid. Control Dyn. 39(10), 2312–2323 25). Our improvements are threefold. First, we indicate the limitations of the original 3D collision avoidance method and present the modifications on the algorithm. Second, we develop the velocity obstacle method to be capable of handling cube obstacles in 3D space. Third, a real flight test is conducted to verify the effectiveness of the proposed three-dimensional velocity obstacle method.
Year
DOI
Venue
2020
10.1007/s10846-019-01055-5
Journal of Intelligent & Robotic Systems
Keywords
Field
DocType
Three-dimensional collision avoidance, Three-dimensional velocity obstacle method, Unmanned aerial vehicles
Obstacle,Real-time computing,Flight test,Control engineering,Collision,Engineering,Cube
Journal
Volume
Issue
ISSN
97
1
0921-0296
Citations 
PageRank 
References 
0
0.34
0
Authors
4
Name
Order
Citations
PageRank
Chee Yong Tan100.34
Su-Nan Huang250561.65
Kok Kiong Tan392399.57
Rodney Teo421615.80