Title
Graph-Based Design Of Hierarchical Reinforcement Learning Agents
Abstract
There is an increasing interest in Reinforcement Learning to solve new and more challenging problems, as those emerging in robotics and unmanned autonomous vehicles. To face these complex systems, a hierarchical and multi-scale representation is crucial. This has brought the interest on Hierarchical Deep Reinforcement learning systems. Despite their successful application, Deep Reinforcement Learning systems suffer from a variety of drawbacks: they are data hungry, they lack of interpretability, and it is difficult to derive theoretical properties about their behavior. Classical Hierarchical Reinforcement Learning approaches, while not suffering from these drawbacks, are often suited for finite actions, and finite states, only. Furthermore, in most of the works, there is no systematic way to represent domain knowledge, which is often only embedded in the reward function.We present a novel Hierarchical Reinforcement Learning framework based on the hierarchical design approach typical of control theory. We developed our framework extending the block diagram representation of control systems to fit the needs of a Hierarchical Reinforcement Learning scenario, thus giving the possibility to integrate domain knowledge in an effective hierarchical architecture.
Year
DOI
Venue
2019
10.1109/IROS40897.2019.8968252
2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)
Field
DocType
ISSN
Complex system,Interpretability,Architecture,Domain knowledge,Computer science,Control engineering,Artificial intelligence,Control system,Block diagram,Robotics,Reinforcement learning
Conference
2153-0858
Citations 
PageRank 
References 
0
0.34
0
Authors
3
Name
Order
Citations
PageRank
Davide Tateo134.82
Idil Su Erdenlig200.34
Andrea Bonarini362376.73