Title
A Three-Dimensional Microelectrode Array To Generate Virtual Electrodes For Epiretinal Prosthesis Based On A Modeling Study
Abstract
Despite many advances in the development of retinal prostheses, clinical reports show that current retinal prosthesis subjects can only perceive prosthetic vision with poor visual acuity. A possible approach for improving visual acuity is to produce virtual electrodes (VEs) through electric field modulation. Generating controllable and localized VEs is a crucial factor in effectively improving the perceptive resolution of the retinal prostheses. In this paper, we aimed to design a microelectrode array (MEA) that can produce converged and controllable VEs by current steering stimulation strategies. Through computational modeling, we designed a three-dimensional concentric ring-disc MEA and evaluated its performance with different stimulation strategies. Our simulation results showed that electrode-retina distance (ERD) and inter-electrode distance (IED) can dramatically affect the distribution of electric field. Also the converged VEs could be produced when the parameters of the three-dimensional MEA were appropriately set. VE sites can be controlled by manipulating the proportion of current on each adjacent electrode in a current steering group (CSG). In addition, spatial localization of electrical stimulation can be greatly improved under quasi-monopolar (QMP) stimulation. This study may provide support for future application of VEs in epiretinal prosthesis for potentially increasing the visual acuity of prosthetic vision.
Year
DOI
Venue
2020
10.1142/S0129065720500069
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS
Keywords
DocType
Volume
Virtual electrode, microelectrode array, electrical stimulation, epiretinal prosthesis
Journal
30
Issue
ISSN
Citations 
3
0129-0657
0
PageRank 
References 
Authors
0.34
0
10
Name
Order
Citations
PageRank
Qing Lyu100.34
Zhuofan Lu241.38
Heng Li352.10
Shirong Qiu411.64
Jiahui Guo521.79
Xiaohong Sui600.34
Pengcheng Sun700.68
Liming Li852.68
Xinyu Chai951.76
Lovell Nigel H.107028.52